Что достигнуто в ИИ к настоящему времени?

Громадное количество научных работ по ИИ посвящено компьютерному зрению. Это направление ИИ связано с развитием глубинного обучения (о нем ниже). Впервые компьютеры стали способны выполнять некоторые визуальные задачи классификации лучше, чем люди. Например, заявленная точность назначения оптимального лечения раковых заболеваний легких у компьютера IBM Watson составляет 90%, т.е. превышает на 40% качество диагностики, проводимой врачами-онкологами.

Важным понятием в ИИ является «машинное обучение» (его называют также статистическим обучением). Основу данной технологии в 1959 г. заложил Артур Самюэль, когда предложил работать над обучением компьютеров, не используя определенно запрограммированные алгоритмы. В простейшем смысле программа обучается, когда в ней происходит изменение, позволяющее во второй раз выполнить определенное задание лучше. Машинное обучение – это технология, в рамках которой создается база обучающих примеров, по которой компьютер или нейросеть настраивается (обучается) и затем может правильно распознавать и классифицировать поступающие новые данные, т.е. это совокупность алгоритмов и методов, позволяющих научить компьютеры делать выводы на основании имеющихся данных. Добавление обучающих примеров позволяет улучшить результаты распознавания. Таким образом происходит как бы самообучение программы. По этой технологии по большой базе фотографий компьютер научили распознавать лица, причем он делает это точнее, чем человек. Настоящий прорыв в обучении машин произошел в начале 2016 г., когда программа Google AlphaGo сумела обыграть в игру го ее абсолютного чемпиона Ли Седоля. Эта игра является наиболее интеллектуально сложной игрой в мире, намного сложнее шахмат (в го доска 19 × 19 клеток и возможных позиций намного больше, чем в шахматах), в которой для победы необходимо не просто перебирать всевозможные ходы. Добиться победы в го над ее чемпионом позволила технология «глубинного машинного обучения» (deep learning, DL), которая сейчас является самым трендовым направлением развития искусственного интеллекта. Этот термин применяемся к искусственным нейронным сетям (ИНС), где используется больше одного скрытого слоя, поэтому формально «глубинный» указывает еще и на более многослойную архитектуру нейронной сети. Уникальным для глубинного обучения является то, что машина сама находит признаки (ключевые черты чего-либо, по которым легче всего отделить один класс объектов от другого) и структурирует их иерархично: из более простых складываются более сложные. У термина «глубинное обучение» нет формального определения, поскольку он объединяет целую группу различных технологий. Таким образом, компьютер учится на примерах и своем собственном опыте. Программа AlphaGo сначала проанализировала 29,4 млн ходов в 160 тыс. партий профессиональных игроков, а затем две копии программы начали играть одна с другой, добавляя новые партии в обучающую выборку. Сыграв миллионы партий, программа научилась оценивать наиболее выгодное положение камней на доске для достижения победы. Технология глубинного обучения сейчас является неотъемлемой частью исследований в области распознавания речи, изображений, при создании систем управления беспилотными автомобилями, диагностике заболеваний и решении других сложных задач. Развитием технологии глубинного обучения стала реализованная IBM летом 2017 г. технология распределенного глубинного обучения (DDL), позволяющая на порядок сократить время обучения искусственной нейронной сети.

Следует отметить, чего не может современный ИИ и что отделяет его от общего ИИ: – отсутствует запоминание ранее приобретенных навыков при обучении новым; – ИИ не может при обучении новым навыкам опираться на ранее приобретенные, т.е. отсутствует обобщение накопленных знаний и использование их в разных контекстах. Массовое распространение смартфонов породило широкое использование речевых помощников, в которых реализуются элементы ИИ. Такие приложения помогают пользователю в его повседневной деятельности. Среди них такие известные приложения, как Siri (компании Apple), Cortana (Microsoft), Google Now (Google), Echo (Amazon), «Алиса» (Яндекс) и др., которым уже пользуются десятки миллионов людей. Данные приложения реализуются также на планшетах, ноутбуках и персональных компьютерах. Со временем эти программы станут все интеллектуальнее и незаменимее. Важным направлением работ по ИИ является выявление структуры мозга человека. Такие проекты весьма дорогостоящие, и потому их реализацию могут позволить себе немногие страны и гигантские корпорации. Анализ структуры мозга – это обратное проектирование, которое предполагает, что сначала нужно разобраться до тонкостей в человеческом мозге, а затем представить то, что мозг делает, в виде аппаратного и программного обеспечения. В итоге ученые надеются создать компьютер, обладающий ИИ человеческого уровня. Несколько громадных проектов (с инвестициями в миллиарды долларов) нацелено на достижение этого результата. Моделированию человеческого мозга посвящен международный проект Human Brain Project (HBP), который ведет команда из швейцарской Федеральной политехнической школы в Лозанне под руководством профессора Генри Маркрама (Henry Markram) и в котором участвует более 100 научных групп со всего мира. Цель проекта – синтезировать все знания, полученные людьми о мозге, в единую полноценную модель мозга внутри суперкомпьютера. Завершение проекта предполагается в 2023 г. Американский проект Brain Activity Map Project («Карта активности мозга», 2013 г.) рассчитан на то, за 10 лет американским ученым удастся зафиксировать и картографировать активность каждого нейрона в человеческом мозге. Есть еще около десятка менее емких, но не менее важных проектов по изучению мозга. Весьма интересен проект Blue Brain, 138 базирующийся в Швейцарии, в котором ученые изучают работу ансамблей нейронов. Проект SyNAPSE, финансируемый DARPA и корпорацией IBM, ставит задачу создания физической копии мозга, воплощенной в виде специальных микросхем с искусственными нейронами. Это направление получило название нейроморфная электроника. Аналогичные проекты развивает Китай. Тем не менее в настоящий момент исчерпывающее моделирование мозга невозможно в силу ограниченных возможностей современных суперкомпьютеров (для этого требуется производительность в десятки эксафлопс, т.е. на 3–4 порядка больше нынешней). Из других глобальных проектов, в которых предполагается использовать методы ИИ и системную аналитику, следует отметить продолжение проекта «Геном человека», в котором планируется определить ДНК-последовательности всех живых существ планеты. Например, Amazon Third Way разрабатывает проект под названием «Банк кодов Земли».

 

Список литературы.

  1. Исхакова, А. Ф. Применение искусственного интеллекта / А. Ф. Исхакова // Вестник современных исследований. - 2018.
  2. ИИ не просто становится лучше; он становится все более распространенным // Harvard Business Publishing (HBP) : сайт. – 2019
  3. Солнцева, О. Г. Аспекты применения технологий искусственного интеллекта / О. Г. Солнцева // E-Management. - 2018.
  4. Ученые создали самообучающийся ИИ, способный играть во все игры // Ria.ru : портал новостей. -2018.
  5. Финн, В.  К.  Искусственный  интеллект:  методология  применения, философия / В. К. Финн. - Изд. стереотип. - М. : Красанд, URSS, 2018. - 448 с.
  6. Старовойтова, О. Э. Искусственный интеллект и его влияние на формирование развития права / О. Э. Старовойтова // Юридическая наука: история и современность. - 2018.